oo414 Textural Analysis of T2-weighted MR Images Can Distinguish Between High and Low Grade Pediatric Brain Tumors

Harold Yip¹, Tang Phua Hwee², John Carson Allen¹, Low Yin Yee Sharon² ¹Duke-NUS Medical School, ²KK Women's & Children's Hospital

Aims: Pediatric brain tumors are the most common childhood solid tumors and the second leading cause of cancer deaths in children. A new technique to characterize pediatric brain tumors is textural analysis. The aim of this study is to use textural analysis to distinguish between (1) high and low-grade pediatric brain tumors and (2) genotypic subgroups of medulloblastoma.

Methodology: Preoperative T₂ weighted MRI images of 149 pediatric patients diagnosed histopathologically with brain tumors were retrieved from a public children's hospital in Singapore. The statistical filtration-histogram approach of textural analysis was performed using TexRAD. The textural features mean, standard deviation, entropy, mean of positive pixels, skewness and kurtosis were extracted and their diagnostic performances evaluated.

Result: For individual textural features, skewness at spatial scale filter (SSF) o (odds ratio (OR) = 3.22, area under curve (AUC) = 0.786, p = 0.01, sensitivity = 67.6% and specificity = 76.4%) best distinguished between high and low-grade brain tumors. The combination of SSF o mean, SSF o entropy, SSF o skewness, SSF 2 MPP, SSF 3 entropy, SSF 6 MPP and SSF 6 kurtosis (AUC = 0.888, p = 0.05, sensitivity = 84.0%, specificity = 80.9%) best distinguished between high and low-grade brain tumors. Textural analysis could not distinguish WNT, SHH, Group 3 and Group 4 genotypic subgroups of medulloblastoma completely from one another.

Conclusion: Textural analysis can distinguish between high and low-grade pediatric brain tumors reasonably well but is unable to completely distinguish between genotypic subgroups of medulloblastoma.