00237 Sepsis Mortality Prediction Using Heart Rate Variability

Jonan Tan¹, Koh Zhi Xiong², Douglas Leong³, Liu Nan⁴, Ng Cheng Ji Janson², Samsudin Mas'Uud Ibnu⁵, Ong Eng Hock Marcus²

¹University of Bristol, ²Singapore General Hospital, ³National University of Singapore, ⁴SingHealth, ⁵Duke-NUS Medical School

Aims: The Singapore Emergency Department Sepsis (SEDS) model incorporates novel heart rate variability (HRV) parameters to predict 30-day in-hospital mortality (IHM) in patients presenting with suspected sepsis. Patients in the initial study were selected based on the SIRS criteria, and its predictive performance was superior to qSOFA, NEWS and MEWS. Following the publication of Sepsis-3, SIRS is no longer recommended for diagnosing sepsis. We aimed to validate SEDS using broader criteria to see if the model could be improved (SEDS₂).

Methodology: Patients aged ≥ 18 presenting with suspected infection (blood cultures performed and antibiotics administered) were included. HRV variables were computed using routine triage ECG segments. The primary outcome was 30-day IHM, and the secondary outcome was a composite of intubation, ICU admission and 30-day IHM. We used multivariate logistic regression to derive the independent predictors, and performed receiver operating characteristic analyses to compare its performance with SEDS and other clinical scores.

Result: Of 152 patients included, 32 (21.1%) met the primary outcome (IHM). Four independent predictors were obtained, which included two vital signs - systolic blood pressure and respiratory rate, and two HRV parameters - mean heart rate and DFA α_2 . SEDS2 (AUROC 0.80, 95% CI 0.71 – 0.89) outperformed SEDS (AUROC 0.76, 95% CI 0.66 – 0.85), qSOFA (AUROC 0.72, 95% CI 0.62 – 0.82), NEWS (AUROC 0.72, 95% CI 0.61 – 0.82) and MEWS (AUROC 0.66, 95% CI 0.54 – 0.78). Similar results were obtained for the secondary outcome. At the optimal cut-off, the sensitivity and specificity of SEDS2 were 0.72 and 0.68 for the primary outcome, and 0.76 and 0.81 for the secondary outcome respectively.

Conclusion: SEDS₂ outperformed SEDS and other clinical scores, while reducing the number of variables from the previous model. Further work on SEDS₂ will be required to validate and utilize it as a functional clinical tool.